Posts by Tags

ads-ml

Ads ML as a subtopic of production ML systems

1 minute read

Published:

Ads ML shares the same control-plane skeleton as any production ML system; the difference is in the constraints. Bidding and pacing layers add strict latency and budget limits, but they still benefit from the same contracts, rollouts, and observability defaults.

auctions

Auction and pacing simulations for ads lift

1 minute read

Published:

Simulations make lift estimates cheaper by testing policies before we spend budget. They are especially useful when experimentation cycles are long or randomized control is limited.

backtesting

Backtesting ML pipelines before rollout

1 minute read

Published:

Backtesting bridges the gap between offline metrics and production behavior. It prevents surprises by replaying real workloads through new code and models.

capacity-planning

Ads ML as a subtopic of production ML systems

1 minute read

Published:

Ads ML shares the same control-plane skeleton as any production ML system; the difference is in the constraints. Bidding and pacing layers add strict latency and budget limits, but they still benefit from the same contracts, rollouts, and observability defaults.

ci-cd

Backtesting ML pipelines before rollout

1 minute read

Published:

Backtesting bridges the gap between offline metrics and production behavior. It prevents surprises by replaying real workloads through new code and models.

contracts

control-plane

cuped

Experimentos geo para lift de anuncios sin frenar la entrega

1 minute read

Published:

Los experimentos geo siguen siendo la herramienta más práctica para lift cuando subastas y presupuestos complican la aleatorización. El objetivo es que los equipos puedan ejecutarlos sin bloquear el roadmap.

Geo experiments for ads lift without slowing delivery

1 minute read

Published:

Geo experiments remain the most practical lift tool when auctions and budgets complicate randomization. The key is to design them so teams can run and ship without blocking roadmaps.

evaluation

Blueprint de avaliação para sistemas de GenAI

1 minute read

Published:

Funcionalidades de GenAI falham silenciosamente sem avaliação integrada. Um blueprint sólido combina avaliações offline (checklists, prompts de red-team, perguntas douradas) com sinais online (satisfação, recusas, latência e custo) visíveis para os responsáveis.

Blueprint de evaluación para sistemas de GenAI

1 minute read

Published:

Las funciones de GenAI fallan silenciosamente si la evaluación no está integrada. Un buen blueprint empareja pruebas offline (checklists, prompts de red-team, preguntas doradas) con señales online (satisfacción, rechazos, latencia y costo) visibles para los dueños.

Evaluation blueprints for GenAI systems

1 minute read

Published:

GenAI features fail quietly unless evaluation is baked into delivery. A good blueprint pairs offline evals (checklists, red-team prompts, golden questions) with online signals (satisfaction, refusals, latency, cost) and makes both visible to owners.

experimentation

Experimentos geo para lift de anuncios sin frenar la entrega

1 minute read

Published:

Los experimentos geo siguen siendo la herramienta más práctica para lift cuando subastas y presupuestos complican la aleatorización. El objetivo es que los equipos puedan ejecutarlos sin bloquear el roadmap.

Geo experiments for ads lift without slowing delivery

1 minute read

Published:

Geo experiments remain the most practical lift tool when auctions and budgets complicate randomization. The key is to design them so teams can run and ship without blocking roadmaps.

Ads ML as a subtopic of production ML systems

1 minute read

Published:

Ads ML shares the same control-plane skeleton as any production ML system; the difference is in the constraints. Bidding and pacing layers add strict latency and budget limits, but they still benefit from the same contracts, rollouts, and observability defaults.

genai

Operating GenAI safety and policy reviews

1 minute read

Published:

GenAI systems drift as prompts, tools, and models change. Safety operations keep that drift controlled without slowing teams down.

Blueprint de avaliação para sistemas de GenAI

1 minute read

Published:

Funcionalidades de GenAI falham silenciosamente sem avaliação integrada. Um blueprint sólido combina avaliações offline (checklists, prompts de red-team, perguntas douradas) com sinais online (satisfação, recusas, latência e custo) visíveis para os responsáveis.

Blueprint de evaluación para sistemas de GenAI

1 minute read

Published:

Las funciones de GenAI fallan silenciosamente si la evaluación no está integrada. Un buen blueprint empareja pruebas offline (checklists, prompts de red-team, preguntas doradas) con señales online (satisfacción, rechazos, latencia y costo) visibles para los dueños.

Evaluation blueprints for GenAI systems

1 minute read

Published:

GenAI features fail quietly unless evaluation is baked into delivery. A good blueprint pairs offline evals (checklists, red-team prompts, golden questions) with online signals (satisfaction, refusals, latency, cost) and makes both visible to owners.

geo-experiments

Experimentos geo para lift de anuncios sin frenar la entrega

1 minute read

Published:

Los experimentos geo siguen siendo la herramienta más práctica para lift cuando subastas y presupuestos complican la aleatorización. El objetivo es que los equipos puedan ejecutarlos sin bloquear el roadmap.

Geo experiments for ads lift without slowing delivery

1 minute read

Published:

Geo experiments remain the most practical lift tool when auctions and budgets complicate randomization. The key is to design them so teams can run and ship without blocking roadmaps.

governance

Blueprint de avaliação para sistemas de GenAI

1 minute read

Published:

Funcionalidades de GenAI falham silenciosamente sem avaliação integrada. Um blueprint sólido combina avaliações offline (checklists, prompts de red-team, perguntas douradas) com sinais online (satisfação, recusas, latência e custo) visíveis para os responsáveis.

Blueprint de evaluación para sistemas de GenAI

1 minute read

Published:

Las funciones de GenAI fallan silenciosamente si la evaluación no está integrada. Un buen blueprint empareja pruebas offline (checklists, prompts de red-team, preguntas doradas) con señales online (satisfacción, rechazos, latencia y costo) visibles para los dueños.

Evaluation blueprints for GenAI systems

1 minute read

Published:

GenAI features fail quietly unless evaluation is baked into delivery. A good blueprint pairs offline evals (checklists, red-team prompts, golden questions) with online signals (satisfaction, refusals, latency, cost) and makes both visible to owners.

lift

Auction and pacing simulations for ads lift

1 minute read

Published:

Simulations make lift estimates cheaper by testing policies before we spend budget. They are especially useful when experimentation cycles are long or randomized control is limited.

Experimentos geo para lift de anuncios sin frenar la entrega

1 minute read

Published:

Los experimentos geo siguen siendo la herramienta más práctica para lift cuando subastas y presupuestos complican la aleatorización. El objetivo es que los equipos puedan ejecutarlos sin bloquear el roadmap.

Geo experiments for ads lift without slowing delivery

1 minute read

Published:

Geo experiments remain the most practical lift tool when auctions and budgets complicate randomization. The key is to design them so teams can run and ship without blocking roadmaps.

mlops

observability

operations

Operating GenAI safety and policy reviews

1 minute read

Published:

GenAI systems drift as prompts, tools, and models change. Safety operations keep that drift controlled without slowing teams down.

pacing

Auction and pacing simulations for ads lift

1 minute read

Published:

Simulations make lift estimates cheaper by testing policies before we spend budget. They are especially useful when experimentation cycles are long or randomized control is limited.

Ads ML as a subtopic of production ML systems

1 minute read

Published:

Ads ML shares the same control-plane skeleton as any production ML system; the difference is in the constraints. Bidding and pacing layers add strict latency and budget limits, but they still benefit from the same contracts, rollouts, and observability defaults.

pipelines

Backtesting ML pipelines before rollout

1 minute read

Published:

Backtesting bridges the gap between offline metrics and production behavior. It prevents surprises by replaying real workloads through new code and models.

policy

Operating GenAI safety and policy reviews

1 minute read

Published:

GenAI systems drift as prompts, tools, and models change. Safety operations keep that drift controlled without slowing teams down.

rollback

rollout

safety

Operating GenAI safety and policy reviews

1 minute read

Published:

GenAI systems drift as prompts, tools, and models change. Safety operations keep that drift controlled without slowing teams down.

Blueprint de avaliação para sistemas de GenAI

1 minute read

Published:

Funcionalidades de GenAI falham silenciosamente sem avaliação integrada. Um blueprint sólido combina avaliações offline (checklists, prompts de red-team, perguntas douradas) com sinais online (satisfação, recusas, latência e custo) visíveis para os responsáveis.

Blueprint de evaluación para sistemas de GenAI

1 minute read

Published:

Las funciones de GenAI fallan silenciosamente si la evaluación no está integrada. Un buen blueprint empareja pruebas offline (checklists, prompts de red-team, preguntas doradas) con señales online (satisfacción, rechazos, latencia y costo) visibles para los dueños.

Evaluation blueprints for GenAI systems

1 minute read

Published:

GenAI features fail quietly unless evaluation is baked into delivery. A good blueprint pairs offline evals (checklists, red-team prompts, golden questions) with online signals (satisfaction, refusals, latency, cost) and makes both visible to owners.

simulations

Auction and pacing simulations for ads lift

1 minute read

Published:

Simulations make lift estimates cheaper by testing policies before we spend budget. They are especially useful when experimentation cycles are long or randomized control is limited.

testing

Backtesting ML pipelines before rollout

1 minute read

Published:

Backtesting bridges the gap between offline metrics and production behavior. It prevents surprises by replaying real workloads through new code and models.